Staged Approach for Grammatical Gender Identification of Nouns using Association Rule Mining and Classification
نویسندگان
چکیده
In some languages, gender is a grammatical property of the noun. Grammatical gender identification enhances machine translation of such languages. This paper reports a three staged approach for grammatical gender identification that makes use of word and morphological features only. A Morphological Analyzer is used to extract the morphological features. In stage one, association rule mining is used to obtain grammatical gender identification rules. Classification is used at the second stage to identify grammatical gender for nouns that are not covered by grammatical gender identification rules obtained in stage one. The third stage combines the results of the two stages to identify the gender. The staged approach has a better precision, recall and F-score compared to machine learning classifiers used on complete data set. The approach was tested on Konkani nouns extracted from the Konkani WordNet and an F-Score 0.84 was obtained.
منابع مشابه
Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملIdentifying Important Factors of Arthroplasty in Patients with Degenerative Knee Osteoarthritis Based on Association Rule Mining Approach
Background and Aim: Total Knee Arthroplasty (TKA) aims to reduce the pain and improve the quality of life of patients with progressive osteoarthritis. When the indication of patients' disease is established, this type of surgery should be performed as soon as possible because patients' late attendance increases surgical complications. Therefore, identification of factors influencing the choice ...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملDeveloping a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity
Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Research in Computing Science
دوره 90 شماره
صفحات -
تاریخ انتشار 2015